In texts on credit scoring, some effort almost always goes into defining what is to be considered as a "bad" credit. The Basel framework provides rather a precise definition of what is to be considered a default.

But I have rarely seen the same in predicting cross-sell, up-sell or churn. I do however, remember attending an SPSS conference where churn of pre-paid cards was discussed. Churn, in that case, was defined as a number of consecutive periods where the number of calls fell below a certain level.

In the past, I've used start and end dates of contracts, as well as a simple increase (or decrease) in the number of products that a customer has over time as indicators of what to target.

I'd be really interested in hearing how you define and extract targets, be it in telecom, banking, cards or any other business where you use prediction. For instance, how would you go looking for customers that have churned? Or for that matter, customers where up-sell has been successful?

This may be too simple a question, but if there are standard methods that you use, I'd be really interested in learning about them.

--Ola

Ola,

This is not a simple question at all. Or rather, the simplest questions are often the most illuminating.

The place where I see the biggest issues in defining starts and stops is in survival data mining (obligatory plug for my book Data Analysis Using SQL and Excel, which has two chapters on the subject). For the start date, I try to use (or approximate as closely as possible) the date when two things have occurred: the company has agreed to provide a product or service, and the customer has agreed to pay for it. In the case of post-pay telecoms, this would be the activation date -- and there are similar dates in many other industries, as varied as credit cards, cable subscriptions, and health insurance.

The activation date is often well-defined because the number of active customers gets reported through some system tied to the financial systems. Even so, there are anomalies. I recently completed a project at a large newspaper, and used their service start date as the activation date. Alas, at time, customers with start dates did not necessarily actually receive the paper on the date -- often because the newspaper delivery person could not find the address.

The stop date is even more fraught with complication, because there are a variety of different dates to choose from. For voluntary churn, there is the date the customer requests termination of the service. There is also the date when the service is actually turned off. Which to use? It depends on the application. To count active customers, we want the service cut-off date. To plan for customer retention efforts, we want to know when they call in.

Involuntary churn is also complicated, because there are a series of steps, often called the Dunning Process, which keeps track of customers who do not pay. At what point does a non-paying customer stop? When the service stops? When the bill is written off or settled? At some arbitrary point, such as 60 or 90 days of non-payment? To further confuse the situation, the business may change its rules over time. So, during some periods of time or for some customers, 60 days of non-payment results in service cutoff. For other periods or customers, 90 days might be the rule.

Often, I find multiple time-to-event problems in this scenario. How long does it take a non-paying customer to stop, if ever? How long after customers sign up do they begin?

In your particular case, the contract start date is probably a good place to start. However, the contract end date might or might not be appropriate, since this might not be updated to reflect when a customer actually stops.

--gordon

## Friday, June 26, 2009

## Monday, June 8, 2009

### Confidence in Logistic Regression Coefficients

I work in the marketing team of a telecom company and I recently encountered an annoying problem with an upsell model. Since the monthly sale rate is less than 1% of our customer base, I used oversampling as you mentioned in your book ‘Mastering data mining’ with data over the last 3 sales months so that I had a ratio of about 15% buyers and 85% non-buyers (sample size of about 20K). Using alpha=5%, I got parameter estimates which were from a business perspective entirely explicable. However, when I then re-estimated the model on the total customer base to obtain the ‘true’ parameter estimates which I will use for my monthly scoring two effects were suddenly insignificant at alpha=5%.

I never encountered this and was wondering what to do with these effects: should I kick them out of the model or not ? I decided to keep them in since they did have some business meaning and concluded that they must have become insignificant since it is only a micro-segment in your entire population.

To your opinion, did I interpret this correctly ? . . .

Many thanks in advance for your advice,

Wendy

Michael responds:

Hi Wendy,

This question has come up on the blog before. The short answer is that with a logistic regression model trained at one concentration of responders, it is a bit tricky to adjust the model to reflect the actual probability of response on the true population. I suggest you look at some papers by Gary King on this topic.

Gordon responds:

Wendy, I am not sure that Prof. King deals directly with your issue, of changing confidence in the coefficients estimates. To be honest, I have never considered this issue. Since you bring it up, though, I am not surprised that it may happen.

My first comment is that the results seem usable, since they are explainable. Sometimes statistical modeling stumbles on relationships in the data that make sense, although they may not be fully statistically significant. Similarly, some relationships may be statistically significant, but have no meaning in the real world. So, use the variables!

Second, if I do a regresson on a set of data, and then duplicate the data (to make it twice as big) and run it again, I'll get the same estimates as on the orignal data. However, the confidence in the coefficients will increase. I suspect that something similar is happening on your data.

If you want to fix that particular problem, then use a tool (such as SAS Enterprise Miner and probably proc logistic) that supports a frequency option on each row. Set the frequency to one for the more common events and to an appropriate value less than one for more common events. I do this as a matter of habit, because it works best for decision trees. You have pointed out that the confidence in the coefficients is also affected by the frequencies, so this is a good habit with regressions as well.

I never encountered this and was wondering what to do with these effects: should I kick them out of the model or not ? I decided to keep them in since they did have some business meaning and concluded that they must have become insignificant since it is only a micro-segment in your entire population.

To your opinion, did I interpret this correctly ? . . .

Many thanks in advance for your advice,

Wendy

Michael responds:

Hi Wendy,

This question has come up on the blog before. The short answer is that with a logistic regression model trained at one concentration of responders, it is a bit tricky to adjust the model to reflect the actual probability of response on the true population. I suggest you look at some papers by Gary King on this topic.

Gordon responds:

Wendy, I am not sure that Prof. King deals directly with your issue, of changing confidence in the coefficients estimates. To be honest, I have never considered this issue. Since you bring it up, though, I am not surprised that it may happen.

My first comment is that the results seem usable, since they are explainable. Sometimes statistical modeling stumbles on relationships in the data that make sense, although they may not be fully statistically significant. Similarly, some relationships may be statistically significant, but have no meaning in the real world. So, use the variables!

Second, if I do a regresson on a set of data, and then duplicate the data (to make it twice as big) and run it again, I'll get the same estimates as on the orignal data. However, the confidence in the coefficients will increase. I suspect that something similar is happening on your data.

If you want to fix that particular problem, then use a tool (such as SAS Enterprise Miner and probably proc logistic) that supports a frequency option on each row. Set the frequency to one for the more common events and to an appropriate value less than one for more common events. I do this as a matter of habit, because it works best for decision trees. You have pointed out that the confidence in the coefficients is also affected by the frequencies, so this is a good habit with regressions as well.

Labels:
Ask a data miner,
gordon,
Michael,
statistics

Subscribe to:
Posts (Atom)